10.1 Practice A

In Exercises 1–5, use the diagram.

1. Name the circle.
2. Name two radii.
3. Name two chords.
4. Name a secant.
5. Name a tangent.

In Exercises 6 and 7, tell whether AB is tangent to C. Explain your reasoning.

6.

7.

In Exercises 8 and 9, point B is a point of tangency. Find the radius r of C.

8.

9.

In Exercises 10 and 11, points B and D are points of tangency. Find the value(s) of x.

10.

11.

12. Construct C with a 1-inch radius and a point A outside of C. Then construct a line tangent to C that passes through A.

13. Two sidewalks are tangent to a circular park centered at P, as shown.

 a. What is the length of sidewalk AB? Explain.

 b. What is the diameter of the park?
10.1 Practice B

In Exercises 1–5, use the diagram.
1. Name two radii.
2. Name two chords.
3. Name a diameter.
4. Name a secant.
5. Name a tangent and a point of tangency.

In Exercises 6 and 7, tell whether \overline{AB} is tangent to $\odot C$. Explain your reasoning.
6.
7.

In Exercises 8 and 9, point B is a point of tangency. Find the radius r of $\odot C$.
8.
9.

In Exercises 10 and 11, points B and D are points of tangency. Find the value(s) of x.
10.
11.

12. When will two circles have no common tangents? Justify your answer.

13. During a basketball game, you want to pass the ball to either Player A or Player B. You estimate that Player B is about 15 feet from you, as shown.

a. How far away from you is Player A?

b. How can you prove that Player A and Player B are the same distance from the basket?