2.5 Practice A

In Exercises 1 and 2, name the property that the statement illustrates.

1. If
$$\overline{PQ} \cong \overline{RS}$$
, then $\overline{RS} \cong \overline{PQ}$.

2.
$$\angle A \cong \angle A$$

In Exercises 3 and 4, write a two-column proof for this property.

- 3. Symmetric Property of Angle Congruence
- **4.** Reflexive Property of Segment Congruence

In Exercises 5 and 6, write a two-column proof.

5. Given $\stackrel{\text{Sum}}{BF}$ bisects $\angle AFC$ and $\angle CFD \cong \angle BFC$. Prove $\angle AFB \cong \angle CFD$.

6. Given \overline{AG} bisects \overline{CD} , \overline{IJ} bisects \overline{CE} , and \overline{BH} bisects \overline{ED} . Prove $\overline{KE} \cong \overline{FD}$.

2.5 Practice B

In Exercises 1 and 2, write a two-column proof for this property.

- 1. Symmetric Property of Segment Congruence
- 2. Transitive Property of Angle Congruence

In Exercises 3-5, write a two-column proof.

3. Given E bisects \overline{AI} , \overline{BC} bisects \overline{AE} , and \overline{FH} bisects \overline{EI} . Prove $\overline{AD} \cong \overline{EG}$.

4. Given $m\angle KMN = 28^{\circ}$ and $m\angle PTS = 118^{\circ}$. Prove $\angle JMK \cong \angle STR$.

5. Given $\angle ADC \cong \angle BDE$. Prove $\angle ADE \cong \angle BDC$.

