2.5 Practice A In Exercises 1 and 2, name the property that the statement illustrates. 1. If $$\overline{PQ} \cong \overline{RS}$$, then $\overline{RS} \cong \overline{PQ}$. 2. $$\angle A \cong \angle A$$ In Exercises 3 and 4, write a two-column proof for this property. - 3. Symmetric Property of Angle Congruence - **4.** Reflexive Property of Segment Congruence In Exercises 5 and 6, write a two-column proof. **5.** Given $\stackrel{\text{Sum}}{BF}$ bisects $\angle AFC$ and $\angle CFD \cong \angle BFC$. Prove $\angle AFB \cong \angle CFD$. **6.** Given \overline{AG} bisects \overline{CD} , \overline{IJ} bisects \overline{CE} , and \overline{BH} bisects \overline{ED} . Prove $\overline{KE} \cong \overline{FD}$. ## 2.5 Practice B In Exercises 1 and 2, write a two-column proof for this property. - 1. Symmetric Property of Segment Congruence - 2. Transitive Property of Angle Congruence In Exercises 3-5, write a two-column proof. **3.** Given E bisects \overline{AI} , \overline{BC} bisects \overline{AE} , and \overline{FH} bisects \overline{EI} . Prove $\overline{AD} \cong \overline{EG}$. **4.** Given $m\angle KMN = 28^{\circ}$ and $m\angle PTS = 118^{\circ}$. Prove $\angle JMK \cong \angle STR$. **5.** Given $\angle ADC \cong \angle BDE$. Prove $\angle ADE \cong \angle BDC$.