\qquad
\qquad
4.1

Practice A

In Exercises 1-3, write an equation of the line with the given slope and y-intercept.

1. slope: 3
y-intercept: 8
2. slope: -4
y-intercept: 0
3. slope: 0
y-intercept: -2

In Exercises 4 and 5, write an equation of the line in slope-intercept form.
4.

5.

In Exercises 6-8, write an equation of the line that passes through the given points.
6. $(2,3),(0,9)$
7. $(5,-2),(0,-2)$
8. $(-1,4),(0,-2)$

In Exercises 9-11, write a linear function \boldsymbol{f} with the given values.
9. $f(0)=3, f(1)=5$
10. $f(0)=9, f(2)=4$
11. $f(3)=-2, f(0)=1$
12. In 2003, a gallon of gas cost $\$ 1.75$. In 2013, a gallon of gas cost $\$ 3.50$.
a. Write a linear model that represents the cost (in dollars) of a gallon of gas as a function of the number of years since 2003.
b. Use the model to predict the cost of a gallon of gas in 2023.
13. Line λ is a reflection in the y-axis of line k. Write an equation that represents line k.

\qquad

4.1 Practice B

In Exercises 1-3, write an equation of the line with the given slope and \boldsymbol{y}-intercept.

1. slope: 3
y-intercept: -9
2. slope: 0 y-intercept: $\frac{1}{3}$
3. slope: $-\frac{2}{5}$
y-intercept: 7

In Exercises 4 and 5, write an equation of the line in slope-intercept form.

4.

5.

In Exercises 6-8, write an equation of the line that passes through the given points.
6. $(4,0),(0,-7)$
7. $(0,-3),(-2.5,2)$
8. $(0,4),(-6,1.5)$

In Exercises 9-11, write a linear function \boldsymbol{f} with the given values.

9. $f(6)=-2, f(0)=-5$
10. $f(0)=-1, f(2)=-1$
11. $f(-4)=3, f(0)=-2$
12. A T-shirt design company charges your team an initial fee of $\$ 25$ to create the team's design. Each T-shirt printed with your design costs an additional $\$ 8$.
a. Write a linear model that represents the total cost of purchasing your team's T-shirts with your design as a function of the number of T-shirts.
b. Your team has 35 members. If a T-shirt is purchased for every member, what would be the cost?
13. Line λ is a reflection in the x-axis of line k. Write an equation that represents line k.

