4.3 Practice A

1. Trace the polygon and point \(P \). Then draw a 60° rotation of the polygon about point \(P \).

 ![Polygon with point P](image)

2. Graph the polygon and its image after a 270° rotation about the origin.

 ![Graph with rotated polygon](image)

In Exercises 3 and 4, graph \(\triangle RST \) with vertices \(R(2, 3) \), \(S(-2, 1) \), and \(T(-1, 5) \) and its image after the composition.

3. **Translation:** \((x, y) \rightarrow (x - 2, y - 1)\)
 Rotation: 90° about the origin

4. **Reflection:** in the line \(x = y \)
 Rotation: 180° about the origin

In Exercises 5 and 6, determine whether the figure has rotational symmetry. If so, describe any rotations that map the figure onto itself.

5.

6.

7. Draw \(\overline{AB} \) with points \(A(2, 0) \) and \(B(0, 2) \). Rotate the segment 90° counterclockwise about point \(A \). Then rotate the two segments 180° about the origin. What geometric figure did you create using the original segment and its images?

8. List the uppercase letters of the alphabet that have rotational symmetry, and state the angle of the symmetry.
1. Graph the polygon and its image after a 90° rotation about the origin.

In Exercises 2 and 3, graph \(\triangle CDE \) with vertices \(C(-1, -3), D(4, 2), \) and \(E(-5, -1) \) and its image after the composition.

2. **Rotation:** 180° about the origin
 Translation: \((x, y) \rightarrow (x + 3, y + 1)\)

3. **Reflection:** in the line \(x = y \)
 Rotation: 270° about the origin

In Exercises 4 and 5, determine whether the figure has rotational symmetry. If so, describe any rotations that map the figure onto itself.

4.

5.

6. Is it possible to have an object that does not have 360° of rotational symmetry? Explain your reasoning.

7. A figure that is rotated 60° is mapped back onto itself. Does the figure have rotational symmetry? Explain. How many times can you rotate the figure before it is back where it started?

8. Your friend claims that he can do a series of translations on any geometric object and get the same result as a rotation. Is your friend correct?

9. Your friend claims that she can do a series of reflections on any geometric object and get the same result as a rotation. Is your friend correct?

10. List the digits from 0–9 that have rotational symmetry, and state the angle of the symmetry.