4.5

Practice A

In Exercises 1 and 2, use residuals to determine whether the model is a good fit for the data in the table. Explain.

1.
$$y = \frac{7}{2}x - 8$$

X	-4	-3	-2	-1	0	1	2	3	4
у	-21	-19	-15	-12	-8	-4	-1	2	6

2.
$$y = -4x + 27$$

x	1	2	3	4	5	6	7	8	9
y	24	22	19	18	15	11	9	6	5

In Exercises 3 and 4, use a graphing calculator to find an equation of the line of best fit for the data. Identify and interpret the correlation coefficient.

 x
 1
 2
 3
 4
 5
 6
 7
 8
 9

 y
 -7
 -4
 -1
 0
 0
 1
 4
 7
 9

 x
 -5
 -3
 -1
 1
 3
 5
 7
 9
 11

 y
 20
 18
 15
 14
 12
 9
 7
 4
 2

5. The table shows the number of people *x* in a room and the temperature in the room in degrees Fahrenheit, *y*.

x	0	1	2	3	4	5	6	7	8
y	76	76	77	77	78	79	79	80	82

- **a.** Use a graphing calculator to find an equation of the line of best fit.
- **b.** Identify and interpret the correlation coefficient.
- **c.** Interpret the slope and *y*-intercept of the line of best fit.
- ${f d.}$ Approximate the temperature when 15 people are in the room.

4.5 Practice B

In Exercises 1 and 2, use residuals to determine whether the model is a good fit for the data in the table. Explain.

1.
$$y = \frac{3}{2}x - 10$$

x	2	4	6	8	10	12	14	16	18
у	-1	-1	1	2	5	6	8	10	14

2.
$$y = -2x + 56$$

x	1	2	3	4	5	6	7	8	9
у	52	50	48	47	45	42	41	38	35

In Exercises 3 and 4, use a graphing calculator to find an equation of the line of best fit for the data. Identify and interpret the correlation coefficient.

-12-8-40 4 12 16 20 29 48 42 37 31 24 19 7

 x
 3
 4
 5
 6
 7
 8
 9
 10
 11

 y
 20
 36
 15
 32
 12
 28
 17
 16
 24

5. The table shows the average number of minutes y per kilometer for runners and the total distance of a running race, x (in kilometers).

x	3.1	6.2	9.3	12.4	15.5	18.6	21.7	24.8	27.9
y	5.4	5.6	5.7	5.9	6.0	6.1	6.3	6.5	6.9

- **a.** Use a graphing calculator to find an equation of the line of best fit.
- **b.** Identify and interpret the correlation coefficient.
- **c.** Interpret the slope and *y*-intercept of the line of best fit.
- **d.** Approximate the average number of minutes per kilometer when the distance of a race is 31 kilometers.