Practice A

In Exercises 1-3, find the degree of the polynomial.

1.
$$7n^3$$

2.
$$\frac{1}{3}x^5$$

3.
$$w^2 y^5$$

In Exercises 4-6, write the polynomial in standard form. Identify the degree and leading coefficient of the polynomial. Then classify the polynomial by the number of terms.

4.
$$5h - 4h^3 - 2$$

5.
$$10 + 4p^3$$

6.
$$6v^7$$

7. The expression $-16t^2 + 20t + 100$ represents the height of an object t seconds after it is dropped from a height of 100 feet. Why is this expression a trinomial? What is its degree?

In Exercises 8-11, find the sum.

8.
$$(7t+6)+(-4t-2)$$

9.
$$(-12v + 3) + (8v - 7)$$

10.
$$(3j^2 - 7j + 1) + (-6j^2 - 4j + 9)$$
 11. $(2w^2 - 7w + 3) + (2w^2 + 8w)$

11.
$$(2w^2 - 7w + 3) + (2w^2 + 8w)$$

In Exercises 12–15, find the difference.

12.
$$(p-5)-(4p-7)$$

13.
$$(8w + 3) - (9w + 6)$$

14.
$$(3y^2 - 6y + 9) - (6y^2 - 7y - 2)$$
 15. $(5b^2 - 6b - 9) - (-2b^2 + 8b - 1)$

15.
$$(5b^2 - 6b - 9) - (-2b^2 + 8b - 1)$$

16. Describe and correct the error in finding the sum.

$$(x^3 - 8x + 2) + (3x^3 + 7x + 6) = x^3 - 8x + 2 + 3x^3 + 7x + 6$$
$$= (x^3 + 3x^3) - (8x + 7x) + (2 + 6)$$
$$= 4x^3 - 15x + 8$$

In Exercises 17 and 18, find the sum or difference.

17.
$$(3p^2 - 6pq + 7q^2) - (p^2 - 5pq + 9q^2)$$

18.
$$(x^2 - 4xy + 9y^2) + (-8x^2 + 6xy - y^2)$$

19. Your friend says that when subtracting polynomials, the order in which you subtract does not matter. Is your friend correct? Explain.

Practice B

In Exercises 1–3, find the degree of the polynomial.

1.
$$-3.25n^8$$

2.
$$\frac{1}{5}x^4yz^2$$

3.
$$uv^3w^9$$

In Exercises 4-6, write the polynomial in standard form. Identify the degree and leading coefficient of the polynomial. Then classify the polynomial by the number of terms.

4.
$$3t - 8t^2 + 10t^5$$

5.
$$\frac{2}{9}n^2 - \pi n + 3n^4$$

6.
$$\sqrt{14}p^5$$

7. The monthly profit for a small company is represented by $250x^5 - 42x^2 + 112x$, where x is the number of beds sold. Classify the polynomial by the number of terms. What is its degree?

In Exercises 8-11, find the sum.

8.
$$(-2t^2 - 7t + 5) + (-8t^2 + 4t - 3)$$
 9. $(8y^2 - 2y + 4) + (5y^2 - 7y)$

9.
$$(8y^2 - 2y + 4) + (5y^2 - 7y)$$

10.
$$(3k - 5k^3 + 9) + (8k^3 - 4k + 8)$$

10.
$$(3k - 5k^3 + 9) + (8k^3 - 4k + 8)$$
 11. $(3q^2 - 7q - 6) + (2q^2 - 5q^3 + 8q)$

In Exercises 12-15, find the difference.

12.
$$(t^3 - 5t^2 - 7) - (t - 11)$$

13.
$$(-w-13) - (-3w^3 + w^2 + 6w)$$

14.
$$(x^4 - x^2 + 9) - (13 - 6x^2 + 8x)$$

15.
$$(3g - 5g^3 + 6g^2) - (12g^3 + 9g - 10)$$

16. The number of economy-size cars rented in w weeks is represented by 152 + 3w. The number of full-size cars rented in w weeks is represented by 99 + 2w. Write a polynomial that represents how many more economy cars are rented in w weeks than full-size cars.

In Exercises 17 and 18, find the sum or difference.

17.
$$(g^2 - 9h^2) + (g^2 - 15gh + 8h^2)$$

17.
$$(g^2 - 9h^2) + (g^2 - 15gh + 8h^2)$$
 18. $(-m^2 - 5mn) - (m^2 + 3mn - 9n^2)$

19. The polynomial $-16t^2 + v_0t + s_0$ represents the height (in feet) of an object, where v_0 is the initial vertical velocity (in feet per second), s_0 is the initial height of the object (in feet), and t is the time (in seconds). Write a polynomial that represents the height of an object that has initial velocity 25 feet per second and initial height 4 feet. Then find the height of the object after 1 second.