In Exercises 1 and 2, state which theorem you can use to show that the quadrilateral is a parallelogram.

1.

2.

In Exercises 3 and 4, find the value of x that makes the quadrilateral a parallelogram.

3.

4.

In Exercises 5 and 6, graph the quadrilateral with the given vertices in a coordinate plane. Then show that the quadrilateral is a parallelogram.

5. $A(-4, -2), B(-2, 1), C(4, 1), D(2, -2)$

6. $E(-4, 1), F(-1, 5), G(11, 0), H(8, -4)$

7. Use the diagram to write a two-column proof.

Given: $\angle A \cong \angle ABE$

$AE \cong CD, BC \cong DE$

Prove: $BCDE$ is a parallelogram.

8. In the diagram of the handrail for a staircase shown, $m\angle A = 145^\circ$ and $\overline{AB} \cong \overline{CD}$.

- a. Explain how to show that $ABDC$ is a parallelogram.
- b. Describe how to prove that $CDFE$ is a parallelogram.
- c. Can you prove that $EFHG$ is a parallelogram? Explain.
- d. Find $m\angle ACD$, $m\angle DCE$, $m\angle CEF$, and $m\angle EFD$.

242 Geometry
Resources by Chapter
In Exercises 1 and 2, state which theorem you can use to show that the quadrilateral is a parallelogram.

1.

2.

In Exercises 3 and 4, find the value of \(x \) that makes the quadrilateral a parallelogram.

3.

4.

In Exercises 5 and 6, graph the quadrilateral with the given vertices in a coordinate plane. Then show that the quadrilateral is a parallelogram.

5. \(W(-3, -1), X(-3, 4), Y(3, 2), Z(3, -3) \)

6. \(A(-4, 0), B(2, 2), C(5, -1), D(-1, -3) \)

7. Use the diagram to write a two-column proof.

 Given: \(\angle A \cong \angle FDE \)

 \(F \) is the midpoint of \(AD \).

 \(D \) is the midpoint of \(CE \).

 Prove: \(ABCD \) is a parallelogram.

8. A quadrilateral has two pairs of congruent angles. Can you determine whether the quadrilateral is a parallelogram? Explain your reasoning.

9. An octagon star is shown in the figure on the right.

 a. Find \(m \angle FCG, m \angle BCF, \) and \(m \angle D \).

 b. State which theorem you can use to show that the quadrilateral is a parallelogram.

 c. The length of \(AB \) is three times the length of \(AD \). Write an expression for the perimeter of parallelogram \(ABCD \) in terms of the variable \(x \).